
An Overview of Meros

Trilinos User’s Group
Wednesday, November 2, 2005

Victoria Howle
Computational Sciences and Mathematics Research Department (8962)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

μεροσ

Outline

• What is Meros?
• Motivation & background

– Incompressible Navier–Stokes
– Block preconditioners

• Some preconditioners being developed in Meros
• A few results from these methods
• Code example: user level
• Code example: inside Meros
• Release plans, etc.
• References

What is Meros?
• Segregated preconditioner package in Trilinos
• Scalable block preconditioning for problems that couple simultaneous

solution variables
• Initial focus is on (incompressible) Navier-Stokes
• Release version in progress

– Updating (from old TSF) to Thyra interface
– Plan to release next Fall ‘06

• Team
– Ray Tuminaro

1414, Computational Mathematics & Algorithms
– Robert Shuttleworth

Univ. of Maryland, Summer Student Intern 2003, 2004, 2005
• Other collaborators

– Howard Elman, University of Maryland
– Jacob Schroder, University of Illinois, Summer Intern 2005
– John Shadid, Sandia, NM
– David Silvester, Manchester Univerity

Where is Meros in The Big Picture

• The speed, scalability, and
robustness of an application can
be heavily dependent on the
speed, scalability, and
robustness of the linear solvers

• Linear algebra often accounts
for >80% of the computational
time in many applications

• Iterative linear solvers are
essential in ASC-scale
problems

• Preconditioning is the key to
iterative solver performance

Nonlinear Solver
(e.g., NOX)

Simulation Code
(e.g., MPSalsa, Sierra, Sundance)

Optimization Code
(e.g., APPSPACK, MOOCHO, Opt++, Split)

Analyst or Designer

Linear Algebra Kernel
(e.g., Epetra)

Linear Solver
(e.g., AZTECOO, Belos)
Preconditioner

(e.g., IFPACK, Meros, ML)

Incompressible Navier–Stokes
• Examples of incompressible

flow problems
– Airflow in an airport; e.g.,

transport of an airborne
toxin

– Chemical Vapor Deposition
• Goal: efficient and robust

solution of steady and transient
chemically reacting flow
applications

• Current testbed application:
MPSalsa

• Early user: Sundance
• Related Sandia applications:

– Charon
– ARIA
– Fuego
– …

Airport source detection problem

CVD Reactor

Incompressible Navier–Stokes

• α = 0 ⇒ steady state, α = 1 ⇒ transient
• (2,2)-block = 0 (unstabilized) or

= C (stabilized)
• Incompressibility constraint ⇒ difficult for linear solvers
• Chemically reactive flow ⇒ multiphysics; even harder
• Indefinite, strongly coupled, nonlinear, nonsymmetric systems

Block preconditioners
• Want the scalability of multigrid (mesh-independence)
• Difficult to apply multigrid to the whole system
• Solution:

– Segregate blocks and apply multigrid separately to
subproblems

• Consider the following class of preconditioners:

• is an optimal (right) preconditioner when is the Schur
complement,

(Assuming C = 0)

Choosing (Kay & Loghin, Fp)
• Key is choosing a good Schur complement approximation

to
• Motivation: move F-1 so that it does not appear between

GT and G
• Suppose we have an Fp such that

Then

And

Giving

(Kay, Loghin, & Wathen; Silvester, Elman, Kay & Wathen)

(Ap is pressure Poisson)

Other Choices for

• Kay & Loghin Fp method works well, but…
– Fp is not a standard operator for apps

(pressure convection–diffusion)
– Can be difficult for many applications to provide
– Even if they can provide it, they don’t really want to

• Other options for :
Algebraic pressure convection–diffusion methods:
– Sparse Approximate Commutator (SPAC)
– Least Squares Commutator (LSC)

• Algebraically determine an operator Fp such that

Algebraic Commutators

• Build Fp column by column via ideas similar to sparse
approximate inverses (e.g., Grote & Huckle) ⇒ Sparse
Approximate Commutators (SPAC)
–
– Fp is no longer a pressure convection-diffusion operator

• Minimize via normal equations ⇒ Least Squares Commutators
(LSC)
–
–

–

• The tilde’s are hiding an issue of algebraic vs. differential
commuting

Stabilized LSC (C ≠ 0)

• Certain discretizations require stabilization
• Stabilization term C

• For certain discretizations (GTG) is unstable
– Blows up on high frequencies
– C built to stabilize

• Preconditioner
also needs stabilization
– In 3 places
– Use C for preconditioner stabilization, too

Fp vs. DD results:
Flow over a diamond in MPSalsa

• Linear solve timings
• Steady state (harder than transient

for linear algebra)
• Parallel (on Sandia’s ICC)
• Re = 25

• Using development version of Meros hooked into MPSalsa
through NOX

Unknowns (Procs) DD (seconds) Fp (seconds)
62K (1) 199

1583
1M (16) 7632 1428

failed

368
256K (4) 736

4M (64) 5532

(Matlab) Results: Fp, LSC, and SPAC
• Linear iterations for backward facing step problem on underlying

64x192 grid, Q2-Q1 (stable) discretization.

• Linear iterations for backward facing step problem on underlying
128x384 grid, Q2-Q1 (stable) discretization.

• Results from ifiss
– Academic software package that incorporates our new methods

and a few other methods (Elman, Silvester, Ramage)

Re Fp LSC SPAC
10 30

42
47

19 23
100 21 30
200 22 41

Re Fp LSC SPAC
10 33 23 32

100 58 29 39
200 63 29 60

(Matlab) Results: Fp, LSC, Stabilized LSC

• Linear iterations for lid driven cavity problem on 32x32 grid,
Q1-Q1 (needs stabilization) discretization.

• Results from ifiss

Re Fp LSC Stabilized
LSC

100 27 151

197
228
320

16

1000 80 44
500 57 29

5000 130 83

Transition promising academic methods
into methods for ASC applications

• Promising methods have been developed
• We have extended these methods mathematically to

suit more realistic needs
– Removing need for nonstandard operators
– Stabilization

• Currently, software for these methods is mostly in
academic (Matlab) codes

• Now need to develop software to make them
available to more real-world apps through Trilinos

Meros

• Initial focus is on preconditioners for Navier-Stokes
• A number of solvers are being incorporated:

– Pressure convection-diffusion preconditioners
(today’s focus)

• Fp (Kay & Loghin)
• LSC (and stabilized LSC)
• (SPAC?)

– Pressure-projection methods
E.g., SIMPLE (SIMPLEC, SIMPLER, etc.)

Trilinos packages in an MPSalsa example
Time Loop

Nonlinear
Loop

Linear
Solver

End NonLin
Loop

End Time
Loop

Block
Precond

PackageMethodsComponent

Nonlinear
Solver

Linear
Solver

block
preconditioner

MPSalsa

NOX

⎥
⎦

⎤
⎢
⎣

⎡
−

−

1~
1

S
F Meros

(Thyra)

Newton-Krylov
Methods

Finite Element Epetra

GMRESR Aztec00
(Epetra, Thyra)

F-1 : GMRES/AMG
Ŝ-1 : CG/AMG

Aztec00, ML
Epetra

Meros & Trilinos
• Meros is a package within Trilinos
• Meros is also a user of many other Trilinos packages
• Depends on:

– Thyra
– Teuchos
– (Epetra)

• Currently uses:
– AztecOO
– IFPACK
– ML

• Could use:
– Belos
– Amesos
– …

Example preconditioner:
First set up abstract solvers for inner solves

// WARNING: Assuming TSF-style handles and assuming I have typedeffed
// to hide the Templating

// WARNING: Examples include functionality that is not yet available in Thyra

// Meros builds a PreconditionerFactory so we can pass it to an abstract linear
solver

// E.g., K & L preconditioner needs the saddlepoint matrix A, plus Fp and Ap,
// and choices of solvers for F and Ap

// Inner F solver options:
Teuchos::ParameterList FParams;
FParams.set(“Solver”, “GMRES”);
FParams.set(“Preconditioner”, “ML”);
FParams.set(“Max Iters”, 200);
FParams.set(“Tolerance”, 1.0e-8); // etc
LinearSolver FSolver = new AztecSolver(FParams);

// Inner Ap solver options:
ApParams.set(“Solver”, “PCG”);
ApParams.set(“Preconditioner”, “ML”); // etc
LinearSolver ApSolver = new AztecSolver(ApParams);

Next set up Schur complement approx. and
build the preconditioner

// Set up Schur complement approx factory (with solvers if necessary)
SchurFactory sfac = new KayLoghinSchurFactory(ApSolver);

// Build preconditioner factory with these choices
PreconditionerFactory pfac = new KayLoghinFactory(outerMaxIters,

outerTol, FSolver, sfac, …)
// Group operators that are needed by preconditioner
OperatorSource opSrc = new KayLoghinOperatorSource(saddleA, Fp, Ap);

// Use preconditioner factory directly in an abstract solver
outerParams.set(“Solver”,”GMRESR”); // etc
LinearSolver solver = new AztecSolver(outerParams);
SolverState solverstate = solver.solve(pfac, opSrc, rhs, soln);

Example (cont.)
// Get Thyra Preconditioner from factory for a particular set of ops
Preconditioner Pinv = pfac.createPreconditioner(opSrc);

// Get Thyra LinearOpWithSolve to use precond op more directly
LinearOperator Minv = Pinv.right();
outerParams.set(“Solver”,”GMRESR”);
LinearSolver solver = new AztecSolver(outerParams);
SolverState solverstate = solver.solve(A*Minv, rhs, intermediateSoln);
soln = Minv * intermediateSoln;

// Simple constructors will make intelligent choices of defaults:
PreconditionerFactory pfac = new KayLoghinFactory(maxIters, Tol);

// Still need the appropriate operators for the chosen method
// (some can be built algebraically by default if not given, e.g., SPAC)
OperatorSource opSrc = new OperatorSource(A, Fp, Ap);

Inside createPreconditioner()
// Build the preconditioner given 2x2 block matrix (etc.)
Preconditioner KayLoghinFactory::createPreconditioner(…)
{

// Get F, G, GT blocks from the block operators
LinearOperator F = A.getBlock(1,1);
LinearOperator G = A.getBlock(1,2);
LinearOperator Gt = A.getBlock(2,1);
// LinearOperators Ap and Fp built here or gotten from OpSrc

// Set up F solve (given solver and parameters or build with defaults)
LinearOpWithSolve Finv = F.inverse(FSolver);

createPreconditioner() (cont.)
// Setup Schur complement approximation and solver
// (given by user or build using defaults)
LinearOpWithSolve Apinv = Ap.inverse(ApSolver);
LinearOperator Sinv = -Fp * Apinv;

// Or if we were building an LSC preconditioner
LinearOperator GtG = Gt * G;
LinearOpWithSolve GtGinv = Ap.inverse(ApSolver);
LinearOperator Sinv = -GtGinv * Gt * F * G * GtGinv;

createPreconditioner() (cont.)
LinearOperator Iv = IdentityOperator(F.domain()); // velocity space
LinearOperator Ip = IdentityOperator(G.domain()); // pressure space

// Domain and range of A are Thyra product spaces, velocity x pressure
LinearOperator P1 = new BlockLinearOp(A.domain(),A.range());
LinearOperator P2 = new BlockLinearOp(A.domain(),A.range());
LinearOperator P3 = new BlockLinearOp(A.domain(),A.range());

P1.setBlock(1,1,Finv);
P1.setBlock(2,2,Ip);
P2.setBlock(1,1,Iv);
P2.setBlock(2,2,Ip);
P2.setBlock(1,2,G);
P3.setBlock(1,1,Iv);
P3.setBlock(2,2,Sinv);

return new GenericRightPreconditioner(P1*P2*P3);
}

Plans & Info
• Planning to release Meros 1.0 in Fall ’06

(with closest major Trilinos release)

• Initial block preconditioner selection should include:
– Pressure Convection-Diffusion

• Kay & Loghin (Fp)
• Least Squares Commutator (LSC)
• SPAC?

– Pressure Projection
• SIMPLE
• SIMPLEC, SIMPLER?

• Web page:
software.sandia.gov/Trilinos/packages/meros/index.html

• Mailing lists: Meros-Announce, Meros-Users, etc.
• vehowle@sandia.gov

References
• Elman, Silvester, and Wathen, Performance and analysis of saddle point

preconditioners for the discrete steady-state Navier-Stokes equations, Numer.
Math., 90 (2002), pp. 665-688.

• Kay, Loghin, and Wathen, A preconditioner for the steady-state Navier-Stokes
equations, SIAM J. Sci. Comput., 2002.

• Elman, H., Shadid, and Tuminaro, A Parallel Block Multi-level Preconditioner
for the 3D Incompressible Navier-Stokes Equations, J. Comput. Phys, Vol.
187, pp. 504-523, May 2003.

• Elman, H., Shadid, Shuttleworth, and Tuminaro, Block Preconditioners Based
on Approximate Commutators, to appear in SIAM J. Sci. Comput., Copper
Mountain Special Issue, 2005.

• Elman, H., Shadid, and Tuminaro, Least Squares Preconditioners for
Stabilized Discretizations of the Navier-Stokes Equations, in progress.

	An Overview of Meros
	Outline
	What is Meros?
	Where is Meros in The Big Picture
	Incompressible Navier–Stokes
	Incompressible Navier–Stokes
	Block preconditioners
	Choosing (Kay & Loghin, Fp)
	Other Choices for
	Algebraic Commutators
	Stabilized LSC (C ≠ 0)
	Fp vs. DD results:�Flow over a diamond in MPSalsa
	(Matlab) Results: Fp, LSC, and SPAC
	(Matlab) Results: Fp, LSC, Stabilized LSC
	Transition promising academic methods into methods for ASC applications
	Meros
	Trilinos packages in an MPSalsa example
	Meros & Trilinos
	Example preconditioner:�First set up abstract solvers for inner solves
	Next set up Schur complement approx. and build the preconditioner
	Example (cont.)
	Inside createPreconditioner()
	createPreconditioner() (cont.)
	createPreconditioner() (cont.)
	Plans & Info
	References

